• TENTANG
    • TENTANG KAMI
    • METODE PENGAJARAN
    • PIMPINAN
    • KEKUATAN SISTEM TERPADU
    • SA IN NUMBERS
    • KONTAK
  • SEKOLAH
    • PRA-SEKOLAH
    • SEKOLAH DASAR
    • SEKOLAH MENGENGAH PERTAMA
    • SEKOLAH MENENGAH ATAS
  • KAMPUS
    • KAMPUS L’AVENUE
    • KAMPUS BSD
    • KAMPUS MEDAN
    • KAMPUS SENTUL
    • KAMPUS SURABAYA
    • TUR VIRTUAL
      • L’AVENUE
      • BSD
      • SENTUL
      • MEDAN
      • SURABAYA PAKUWON INDAH
      • SURABAYA GRAND PAKUWON
  • ADMISI
    • ADMISI SAMPOERNA ACADEMY
    • CARA MENDAFTAR
    • JADWALKAN KUNJUNGAN
  • BERITA
    • BERITA
    • ACARA
  • STEAM
  • ONLINE LEARNING
  • BAHASA INDONESIA
    • BAHASA INDONESIA
    • ENGLISH
Sampoerna Academy
  • TENTANG
    • TENTANG KAMI
    • METODE PENGAJARAN
    • PIMPINAN
    • KEKUATAN SISTEM TERPADU
    • SA IN NUMBERS
    • KONTAK
  • SEKOLAH
    • PRA-SEKOLAH
    • SEKOLAH DASAR
    • SEKOLAH MENGENGAH PERTAMA
    • SEKOLAH MENENGAH ATAS
  • KAMPUS
    • KAMPUS L’AVENUE
    • KAMPUS BSD
    • KAMPUS MEDAN
    • KAMPUS SENTUL
    • KAMPUS SURABAYA
    • TUR VIRTUAL
      • L’AVENUE
      • BSD
      • SENTUL
      • MEDAN
      • SURABAYA PAKUWON INDAH
      • SURABAYA GRAND PAKUWON
  • ADMISI
    • ADMISI SAMPOERNA ACADEMY
    • CARA MENDAFTAR
    • JADWALKAN KUNJUNGAN
  • BERITA
    • BERITA
    • ACARA
  • STEAM
  • ONLINE LEARNING
  • BAHASA INDONESIA
    • BAHASA INDONESIA
    • ENGLISH
Sampoerna Academy > Transformasi geometri: Translasi, Rotasi, Refleksi, dan Dilatasi

Transformasi geometri: Translasi, Rotasi, Refleksi, dan Dilatasi

access_timeMarch 17, 2022
perm_identity Posted by Admin Website
folder_open Artikel, Sekolah Menengah Pertama
Transformasi Geometri

Transformasi geometri ini merupakan salah satu materi dari mata pelajaran matematika. Umumnya materi geometri ditemui oleh siswa pada kelas 9 SMP sampai SMA kelas 11.

Transformasi Geometri ini pada dasarnya materi yang membahas terkait perubahan dari suatu bidang. Terjadinya transformasi geometri ini sebenarnya terjadi dalam kehidupan kita sehari-hari. Dalam matematika biasanya digambarkan lewat sebuah titik titik tertentu.

Untuk memahami materi transformasi geometri, artikel ini akan menjelaskan mengenai materi transformasi geometri beserta jenis, rumus, dan contohnya.

Pengertian Transformasi Geometri

Sebelum mengetahui pengertian dari transformasi geometri. Kita jabarkan lebih dulu apa itu arti transformasi dan apa itu geometri. Transformasi berarti perubahan sebuah struktur menjadi bertambah, berkurang atau tertata kembali unsurnya. Sedangkan geometri berarti cabang matematika yang menjelaskan soal sifat garis, sudut, bidang, dan ruang.

Berdasarkan dua definisi tersebut transformasi geometri dapat disimpulkan sebagai perubahan bentuk dari sebuah garis, sudut, ruang, dan bidang.

Dalam kehidupan sehari-hari, transformasi geometri ini biasanya dimanfaatkan untuk pembuatan karya-karya seni dan desain arsitektur.

Jenis-jenis Transformasi Geometri

Transformasi geometri itu sendiri terdiri dari empat jenis, yaitu translasi, rotasi, refleks, dan dilatasi.

Berikut adalah pemaparan lengkap masing-masing jenis transformasi geometri:

1. Translasi (Pergeseran)

Translasi atau pergeseran merupakan jenis dari transformasi geometri di mana terjadi perpindahan atau pergeseran dari suatu titik ke arah tertentu di dalam sebuah garis lurus bidang datar. Akibatnya, setiap bidang yang ada di garis lurus tersebut juga akan digeser dengan arah dan jarak tertentu.

Translasi pada dasarnya hanya mengubah posisi, bukan bentuk dan ukuran dari bidangnya.

Contoh sederhana dari translasi adalah peristiwa yang terjadi di perosotan. Dimana orang yang sama dengan sebuah bidang berpindah posisi dari titik awal (awal perosotan) dan titik akhir (ujung perosotan). Contoh lainnya adalah kendaraan yang berjalan di jalan lurus, dari kejadian itu bisa dilihat bahwa kendaraan yang merupakan objek tidak mengalami perubahan ukuran tetapi hanya berpindah tempat.

Rumus dari translasi itu sendiri adalah:

(x’,y’) = (a,b) + (x,y)

Keterangan:

x’, y’ = titik bayangan

x,y = titik asal

a,b = vektor translasi

Contoh soal transformasi geometri jenis translasi

Tentukan titik bayangan jika titik A adalah (2, 4) dan ditranslasikan menjadi (6, 3)

Jawab:

(x’, y’) = (x +a, y+b)

(x’, y’) = (2+6, 4+3)

(x’, y’) = (8, 7)

Maka titik bayangannya ada di (8, 7)


2. Rotasi (Perputaran)

Rotasi atau juga dikenal dengan perputaran dalam transformasi geometri sesuai dengan namanya berarti sebuah perputaran yang ditentukan oleh titik pusat rotasi, arah rotasi, dan juga besar dari sudut rotasi. Prinsipnya adalah memutar terhadap sudut dan titik pusat yang memiliki jarak yang sama dengan titik yang diputar.

Karena hanya berputar, maka transformasi ini tidak mengubah bentuk atau ukuran dari sebuah bidang.

Contoh sederhananya adalah cara kerja dari bianglala di mana lingkaran memutari titik tengah. Contoh lainnya adalah dalam gangsing. Cara kerja gangsing nyaris sama dengan bianglala karena berputar mengitari titik tengah.

Ada beberapa Rumus dari rotasi, yaitu:

  • Rotasi 90 derajat dengan pusat (a, b): (x,y) maka (-y + a + b, x – a + b)
  • Rotasi 180 derajat dengan pusat (a,b) : (x,y) maka (-x -2a, -y +2b)
  • Rotasi sebesar -90 derajat dengan pusat (a, b) : (x, y) maka (y – b + a, -x + a + b)
  • Rotasi sebesar 90 derajat dengan pusat (0, 0) : (x, y) maka (-y,x)
  • Rotasi 180 derajat dengan pusat (0,0) : (x, y) maka (-x, -y)
  • Rotasi sebesar -90 derajat dengan pusat (0,0) : (x, y) maka (y, -x)

Contoh soal transformasi geometri jenis rotasi

Sebuah titik A (3,2) dirotasikan terhadap titik O (0,0) sejauh 90 derajat searah dengan jarum jam. Tentukanlah bayangan dari titik A.

Jawab:

(x’, y’) = (cos90o sin 90o, –sin 90o cos 90o) (3,2)

(x’, y’) = (0 1 , -1 0) (3,2)

(x’, y’) = (-2,3)

 

3. Refleksi (Pencerminan)

Refleksi atau pencerminan dalam transformasi geometri berarti perubahan dengan memindahkan titik dengan sifat dari suatu cermin datar. Ada dua sifat yang dimiliki dalam transformasi refleksi. Pertama adalah jarak titik ke cermin sama dengan jarak bayangan titik ke cermin. Kedua adalah geometri yang dicerminkan saling berhadapan satu sama lain.

Contoh sederhana dari refleksi ini tentunya adalah ketika kita sedang bercermin.

Rumus umum dari refleksi antara lain:

  • Refleksi terhadap sumbu -x : (x,y) maka (x, -y)
  • Refleksi terhadap sumbu -y : (x,y) maka (-x, y)
  • Refleksi terhadap garis y = x : (x, y) maka (y, x)
  • Refleksi terhadap garis y = -x : (x, y) maka (-y, -x)
  • Refleksi terhadap garis x = h : (x, y) maka (2h, -x,y)
  • Refleksi terhadap garis y = K : (x. y) maka (x, 2k – y)

Contoh soal transformasi geometri jenis refleksi

Tentukanlah koordinat bayangan dari titik A jika Titik A (4, -2) dicerminkan terhadap sumbu x.

Jawab:

A : (a,b) maka A’ (a, -b)

Maka:

A (4, -2) maka A’ (-4, -2)

 

4. Dilatasi (Perkalian)

Dilatasi merupakan transformasi atau perubahan ukuran dari sebuah objek. Dalam dilatasi terdapat dua konsep, yaitu titik dan faktor dari dilatasi.

Titik dari dilatasi menentukan posisi dari dilatasi. Titik ini menjadi tempat pertemuan dari semua garis lurus yang menghubungkan antara titik dalam suatu bangunan ke titik hasil dilatasi.

Sedangkan faktor dilatasi adalah faktor perkalian dari suatu bangun yang sudah didilatasikan.

Contoh sederhana dari dilatasi adalah miniatur. Miniatur biasanya dalam bentuk mainan, seperti mobil-mobilan. Mainan merupakan pengecilan dari sebuah objek besar. Contoh lainnya adalah ketika kita mencetak sebuah foto. Foto tersebut bisa dicetak dengan ukuran-ukuran tertentu tetapi tidak mengubah bentuk dari foto tersebut, mulai dari 2×3, 3×4, sampai 4×6 fotonya tetap sama, hanya ukurannya yang berbeda.

Rumus umum dari dilatasi antara lain:

  • Dilatasi dengan pusat (0, 0) dan faktor skala k : (x, y) maka (kx, ky)
  • Dilatasi dengan pusat (0, 0) dan faktor skala k : (x, y) maka (kx = k(x-a) + a, (k(y-b) + b))

Contoh soal transformasi geometri jenis dilatasi

Titik A (2,4) akan didilatasikan sebesar tiga kali, dengan pusat yang berada di (-4,2), maka tentukanlah titik A

Jawab:

(x, y) = k(x-a) + a, K(y – b) + b

(2, 4) = 6(2 – (-4)) + (-4), 6(4 – 2) + 2

(2, 4) = (32, 14)

Maka letak titik A dari (2, 4) dengan dilatasi (-4,2) adalah (32, 14)

Demikian adalah pembahasan mengenai materi transformasi geometri beserta jenisnya. Pembahasan materi ini tentu diperdalam di Sampoerna Academy. Ini karena kurikulum yang berstandar internasional diterapkan di Sampoerna Academy dengan metode STEAM.

Tentunya metode ini akan mendorong siswa lebih berperan aktif dalam pemecahan masalah, berpikir kritis dan kreatif. Tertarik dengan Sampoerna Academy? silakan klik link ini.

Source:

Detik.com – transformasi geometri

Newer Tips dan Teknik Belajar Efektif yang Kamu Harus Tahu
Older Memahami Rumus Teorema Pythagoras dan Contoh Soal

Recent Post

  • Ketahui Perbedaan Antara ACP, IB dan A-Level
  • Kesiapan Sampoerna Academy Hadapi Pendidikan Era Society 5.0
  • Membangun Kecerdasan Emosional dan Intelektual pada Anak
  • Pentingnya Mengembangkan Keterampilan Sosial pada Anak
  • Manfaat Bimbingan Karir dan Universitas Bagi Remaja
  • February 2023
  • January 2023
  • December 2022
  • November 2022
  • October 2022
  • September 2022
  • August 2022
  • July 2022
  • June 2022
  • May 2022
  • April 2022
  • March 2022
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • August 2021
  • March 2021
  • January 2021
  • July 2020
  • May 2020
  • April 2020
  • October 2019
  • April 2019
  • March 2019
  • October 2018
  • September 2018
  • July 2018
  • May 2018
  • April 2018
  • March 2018
  • August 2017

Sampoerna Academy (PT. Sekolah Sampoerna Internasional) is an International school that upholds Asian values at the forefront of learning.

  • location_on
    L'AVENUE OFFICE LT.3 JLN RAYA PASAR MINGGU KAV 16. RT.007 RW 009 PANCORAN SOUTH JAKARTA 12780
  • phone_android
    0813 3000 3002
sampoerna-schools-system sampoerna-university sampoerna-academy
Tautan Cepat
  • Beranda
  • Tentang
  • FAQ
  • Kontak
  • Karir
  • Kebijakan Privasi
Terhubung dengan Kami
  • Facebook
  • Instagram
  • Twitter
  • YouTube

Accredited By:

© 2022 Sampoerna Academy. All rights reserved.
keyboard_arrow_up
X